The effect of electrical stimulation in the management of muscle tone in people with neurological impairments: a systematic review

A Capstone Seminar Paper for PTY768 Presented to the Faculty of the Physical Therapy Department The Sage Colleges School of Health Sciences

> In Partial Fulfillment of the Requirements for the Degree of Doctorate of Physical Therapy

> > Nicole Kapfer Samantha Dickson

> > > May 2013

Gabriele Moriello, PT, PhD Research Advisor

Pat Pohl, PT, PhD Program Director, Doctorate of Physical Therapy Program

The effect of electrical stimulation in the management of muscle tone in people with neurological impairments: a systematic review

Statement of Original Work:

I represent to The Sage Colleges that this capstone paper is the original work of the author(s) and does not infringe on the copyright or other rights of others.

Nicole Kapfer

Date of Signature

Samantha Dickson

Date of Signature

Permission for The Sage Colleges to release work:

I hereby give permission to The Sage Colleges to use my work in the following ways:

- Place in the Sage College Libraries electronic collection and make publically available for electronic viewing by Sage-affiliated patrons as well as all general public online viewers (i.e. "open access").
- Place in the Sage College Libraries electronic collection and share electronically for InterLibrary Loan purposes.
- Keep in the departmental program office to show to other students, faculty or outside individuals, such as accreditors or licensing agencies, as an example of student work.

Nicole Kapfer

Date of Signature

Samantha Dickson

Date of Signature

TABLE OF CONTENTS

Abstra	act	3
1.	Introduction	4
2.	Methods	7
	 1.1 Search Strategy. 1.2 Study Selection and Inclusion/Exclusion Criteria 1.3 Data Extraction and Quality Assessment. 1.4 Data Synthesis and Analysis. 	7 7 8 8
3.	Results	9
4.	Discussion	14
5.	Conclusion	17
Refere	ences	18
Table	1	22
Apper	ndix A PEDro Scale	30

<u>Abstract</u>

Purpose/Introduction: The purpose of relieving spasticity is to improve function and quality of life.

Methods: Sixteen articles met the selection criteria and were included in this systematic review. Each article was then rated on the PEDro scale by each reviewer.

Results: Every article that was included in this review showed a significant decrease in muscle tone in people with neurological disorders. This included electric stimulation alone or in combination with orthoses, cycling or botox and TENs alone or with botox. Discussion: The results of this systematic review indicate that electrical stimulation applied alone or as a co-intervention reduces spasticity in people with neuromuscular disorders in the short term. These results are mainly generalizable to people with moderate to severe spasticity that are greater than 3 months post onset.

Conclusion: Overall, there was a decrease in tone but there needs to be further research to determine the specific parameters that can be applied to these patients in the clinical setting.

Introduction

Spasticity can be a debilitating outcome of an upper motor neuron lesion, and is commonly seen in disorders such as cerebral vascular accidents, Parkinson's, traumatic brain injury, spinal cord injury, and multiple sclerosis.^{1,2} It is defined as "hypertonia in which one or both of the following signs are present: resistance to externally imposed movement increases with increasing speed of stretch and varies with the direction of joint movement, and/or resistance to externally imposed movement rises rapidly above a threshold speed or joint angle."³ It has been known for some time that spasticity can cause pain, negatively affecting functional movement and activity performance. Hypertonia can also lead to secondary complications such as contractures, and muscular imbalances, which can result in osteoarthritis, more pain than normal, and skin breakdown. Some 20%-25% of all individuals with first ever stroke present with spasticity, and a prevalence of 12-37% has been reported in people with spinal cord injury.³⁻⁵

There are many different approaches to managing spasticity. These options include oral medications, implanted pumps, physical therapy, and surgery. Oral medications, baclofen pumps, and botox injections have been shown to significantly reduce spasticity.² Oral medications have significant anti-spastic effects but the dosage required to optimally reduce spasticity is not known. One benefit of oral medications is that they do not cause additional muscle weakness. However, there are many adverse side effects that have to be taken into consideration including but not limited to the possibility of bradykinesia, hypotension, dizziness, gastrointestinal issues, and visual symptoms. Intrathecal baclofen

is safer than oral medications with respect to side effects as it by passes the digestive system. Direct injection into the cerebral spinal fluid drastically reduces the amount of medication needed, and the anti-spastic effects have been noticed for up to 12 months.³ Botox injections have been shown to significantly reduce spasticity as well. Injections are needed in relatively high doses (300-400U) with the effects of these injections lasting for approximately 6 months. These effects are dose dependent, the higher the dose the more effective the outcomes. It has been shown that antibodies are formed with continued injections, making the treatment less effective as time goes on. Botox injections can be quite expensive, up to \$400 for a vial, with up to 4 vials needed per single treatment session.³ Surgery for reducing spasticity can be used if conservative treatments are not effective. An example of an effective surgical intervention that may be beneficial in reducing spasticity is a selective posterior rhizotomy. Some complications of this procedure that may occur include dural leakages, sensory or motor deficits, sphincter disturbances, and exacerbation or unmasking of notable muscle weakness, but these have been uncommon. There are also some concerns regarding a possible increased predisposition to skeletal problems such as a hip dislocation or spinal deformity in children.⁶

The purpose of relieving spasticity is to improve function and quality of life. Subjectively, drug therapy may not accomplish these goals, since it does not always translate into an increase in functionality. Drug therapies and surgeries also have many side effects. So, even though these techniques have been shown to reduce spasticity many people prefer trying a conservative route of treatment before considering them.⁷⁻⁸ Electrical stimulation is a conservative tool that physical therapists can utilize in a clinical setting to help manage muscle tone to enhance the effects of daily treatment. It is believed that electrical stimulation can be used to modulate abnormal spinal inhibitory circuits.⁹ There are many advantages of electrical stimulation compared to other treatments. Electrical stimulation can modulate the intensity of the intervention, and therefore the intensity of the effect. The spasticity can be modulated versus totally eliminated; therefore individuals can potentially use the residual muscle tone for functional stability. Another advantage is that electrical stimulation is a localized application, therefore targeting specific muscles. It does not affect all muscles in the body, as oral medication might. Disadvantages of electrical stimulation include the potential discomfort of the individual during the application, and the limited duration of the effect.⁷

Despite the use of electrical stimulation world wide, the literature based on its use with regards to managing muscle tone is limited. The research is primarily based on targeting specific muscles with tone and looks primarily at populations of cerebral vascular accident, and spinal cord injury. We would like to combine all approaches and populations in regards to managing muscle spasticity to account for small sample sizes, and the limited available research. The primary aim of this systematic review is to compile the research and determine the effectiveness of electrical stimulation on the management of muscle tone in people with neurological impairments.

<u>Methods</u>

Search strategy:

Relevant studies of the effect of electrical stimulation in the management of muscle tone in people with neurological impairments from 1990 to 2012 were obtained through an extensive computerized search of the following bibliographic databases: CINAHL, Pubmed, Science Direct, Google Scholar, Cochrane, PEDRo, and Hooked on Evidence. The key words "tone", "increased", "spasticity", "reduction", "neurological disorder", "spinal cord injury", "cerebral vascular accident", "stroke", "electrical stimulation", "TENS", "estim" were used in the search, including combinations of these words.

Study selection and inclusion/exclusion criteria:

Studies that met the following criteria were considered for inclusion: (1) Any article published 1990 and after; (2) Articles with greater than 2 participants; (3) Articles written in the English language; (4) Articles including the adult patient population; (5) Articles with patient populations in an inpatient, outpatient or home care setting; (6) Articles including participants with an acute or chronic neurological disorder that result in increased tone including, but not limited to stroke, spinal cord injury, multiple sclerosis, upper motor neuron syndrome and spasticity; (7) Articles that include treatment with the use of electrical stimulation or TENS unit alone or in combination with orthoses, cycling, or botox. Exclusion criteria for the study were (1) Case studies with 1-2 participants; (2) Articles including the pediatric population; (3) Articles using electrical stimulation to strengthen weakened muscles.

Data extraction and quality assessment

Two of the three reviewers found publications in the databases listed above. Three independent reviewers then screened these abstracts to make sure the publications met the inclusion and exclusion criteria. Each criterion was graded on a "yes" or "no" basis. All three reviewers had to agree that each article met all inclusion and exclusion criteria. If there were any discrepancies between the reviewers, the "yes" or "no" ratings were discussed until a conclusion was reached.

A critical appraisal was conducted to determine the methodological quality of the final selected studies. The PEDro scale was utilized to rate each article on 11 specific categories. The purpose of the PEDro scale is to rapidly identify which of the studies are likely to be internally valid and the reliability of the PEDro scale is fair to good.⁸ See Appendix A for a copy of the PEDro Scale.

Each category was awarded one point if the criterion was clearly satisfied but the total score was only rated out of 10. The last question was not used in the scoring since it relates to the external validity or generalizability of the article. The higher the score, the better the article. Two reviewers independently appraised the articles and the results were compared. Any discrepancies were settled through discussion of the scale ratings.

Data synthesis and analysis

Studies were grouped based upon similar interventions. In this systematic review, electrical stimulation in the management of muscle tone in people with neurological

problems was pooled alone or in combination with orthoses, cycling or botox and TENs alone or with botox. Each group was then compared and the results were combined to see if there was an overall decrease in tone. The quality of the study was determined by the ratings of the PEDro scale. Six and above was considered a high quality study, five was moderate and four and below was a low quality study. This scale was determined by the researchers.

Results

Twenty-one articles were originally included in this systematic review. After all three researchers evaluated and critiqued each abstract, five articles were eliminated due to not meeting the inclusion and exclusion criteria. Sixteen studies were ultimately included. Out of these sixteen, there were five randomized controlled trials, four pre-test post test control group design, two repeated measures design, one quasi experiment design, one cross over study, one case control study and one pilot study. The use of electrical stimulation was further broken down into electrical stimulation alone, electrical stimulation with neuroprosthetics, electrical stimulation with botox, electrical stimulation passive locomotion, TENS, or TENS with baclofen. See Table 1 for information on each individual study.

Comparison 1: Hybrid upper extremity functional electrical stimulation (FES) and neuroprosthetic: Two studies¹⁰⁻¹¹ were included in this comparison. Weingarden et al¹⁰ assessed spasticity at the elbow and wrist at baseline and at discharge in a group of people with hemiplegia. This high quality study scored a 9/10 on the PEDRO scale. Ring

et al¹¹ measured spasticity at the shoulder, elbow, wrist, and fingers at baseline, 6 weeks, and completion of the study in a group of people with sub acute stroke. This was a lower quality study, which scored a 3/10 on the PEDRO scale. Both studies showed a significant reduction in upper extremity spasticity compared to baseline measurements. These results suggest that functional electrical stimulation combined with a neuroprosthesis plays a role in reducing spasticity in people with moderate to severe spasticity who are greater than 3 months post onset. Further research is required to come to a consensus on the effects of upper extremity hybrid FES and neuroprosthesis.

Comparison 2: Electrical stimulation alone: Six studies^{1,4,12-15} were included in this comparison. Seib et al ¹ assessed spasticity in the triceps surae muscle at baseline, immediately following the intervention, and 24 hours post intervention. They evaluated the effects of stimulating the agonist versus antagonist muscles in people with traumatic brain injury and spinal cord injury. This study showed that stimulating the antagonist muscle significantly reduces spasticity of the targeted muscles. This was a lower quality study that scored a 4/10 on the PEDRO scale. Van der Salm et al ⁴ assessed ankle spasticity at baseline, immediately following the intervention, then twice at one-hour intervals following the intervention in people with spinal cord injuries. This study found that stimulating the agonist muscle significantly reduces spasticity in the lower leg. This was an intermediate quality study, which scored a 5/10 on the PEDRO scale. King¹² assessed lower extremity spasticity immediately before, at 0, 5, 10, and 15 minutes after termination of a 30-minute treatment session in participants post stroke. This study found that stimulating the agonist muscle significantly reduces spasticity in the lower leg.

Cheng¹³ assessed wrist flexor spasticity before and immediately after the treatment session in participants post stroke. A reduction in spasticity was seen in the extremity that was stimulated as well as the contralateral limb that did not receive stimulation. This was a lower quality study, which scored a 4/10 on the PEDRO scale. Granat et al¹⁴ assessed spasticity of the ankle dorsiflexors at baseline and after each treatment session in people with incomplete spinal cord injuries. The results showed a decrease in spasticity with ambulation and a more symmetrical gait. This was a higher quality study, which scored a 6/10 on the PEDRO scale. Skold et al¹⁵ assessed spasticity of the ankle dorsiflexors at baseline and then 6 months following treatment in people with motor complete tetraplegic spinal cord-injuries. These results showed a significant decrease in dorsiflexor spasticity, which also resulted in an increase in hip flexor, and knee extensor muscle strength, increased upright motor control and an increase in stride length during gait. The results, from these six studies, indicate that the use of electrical stimulation significantly decreases spasticity. Further research is required to come to a consensus on the effects of electrical stimulation, and specific parameters to reduce tone.

Comparison 3: Electrical stimulation with Botox: Two studies¹⁶⁻¹⁷ were examined in this comparison. Hesse et al¹⁶ assessed upper limb spasticity using Botox A alone, Botox A combined with electrical stimulation, electrical stimulation alone, and placebo electrical stimulation at baseline, at 2, 6, and 12 weeks in people post stroke. This was a higher quality study which scored an 8/10 on the PEDRO scale. Carda et al¹⁷ assessed spasticity and the use of botox with electrical stimulation and botox with taping of at least two of the following muscles: flexor carpi ulnaris, flexor carpi radialis, flexor digitorum

superficialis, or flexor digitorum profundus at baseline, one week later and one month following injection in people post stroke. This was a lower quality study, which scored a 4/10 on the PEDRO scale. Both studies showed a significant decrease in spasticity of the upper limb with the most significant results occurring in the groups that combine Botox with electrical stimulation, and Botox with taping. These results suggest that using electrical stimulation or taping after Botox treatments are beneficial in managing spasticity. Further research is required to come to a consensus on the effects of electrical stimulation with botox.

Comparison 4: Electrical stimulation with passive locomotion: Yamaguchi et al ¹⁸ was the only study included in this comparison. This study assessed spasticity in ankle dorsiflexors using electric stimulation combined with passive locomotion both before and after treatment in people with hemiparetic stroke. The results of this study showed the most significant difference in spasticity was in the treatment group receiving both electric stimulation and passive range of motion compared with those just receiving electric stimulation or passive range of motion by itself. This study was a higher quality study as it scored an 8/10 on the PEDRO scale. These results suggest combining passive range of motion with electric stimulation is beneficial in managing spasticity. Further research is required to come to a consensus on the effects of electrical stimulation with passive locomotion.

Comparison 5: Electrical stimulation with lower extremity cycling: Two studies¹⁹⁻²⁰were included in this comparison. Krause et al¹⁹ measured spasticity in the quadriceps muscle

12

at baseline and following lower extremity cycling. The results showed a significant difference in spasticity with electric stimulation combined with active movement compared to that of passive movement. This study was a higher quality studies as it scored a 6/10 on the PEDRO scale. Lo et al²⁰ measured spasticity in the quadriceps and the hamstring muscles at baseline and then following treatment. This study showed a significant decrease in spasticity with passive locomotion combined with electric stimulation compared to just electric stimulation in people post stroke. This study was a higher quality studies as it scored a 6/10 on the PEDRO scale. These results from these two studies suggest that a combination of electric stimulation with some form of lower extremity cycling can decrease spasticity. Further research is required to come to a consensus on the effects electrical stimulation with lower extremity cycling.

Comparison 6: TENS: Two studies²¹⁻²² were included in this comparison. Chung et al²¹ assessed spasticity in the lower extremity at baseline and immediately following treatment using TENS in people with spinal cord injuries. This was a higher quality study, which scored a 9/10 on the PEDRO scale. Armutlu et al²² assessed spasticity in the gastrocsoleus muscle before, immediately following each treatment and 4 weeks after TENS treatment ended in people with multiple sclerosis. This was a higher quality study, which scored a 6/10 on the PEDRO scale. Both studies showed a statistically significant reduction in spasticity of the lower extremity compared to the placebo group. Further research is required to come to a consensus on the effects of TENS.

Comparison 7: TENS and Baclofen: Only one study⁵ was included in this comparison. Aydin et al⁵ assessed the effects of baclofen, and baclofen and TENS on lower extremity spasticity 15 minutes after the first application, 15 minutes after the 15th session, and 24 hours after the 15th session in people with spinal cord injuries. Both treatment groups showed significant improvements but there was no significant difference found between Baclofen alone, and Baclofen with TENS. This study scored 7/10 on the PEDRO scale. TENS may be recommended as a supplement to medical treatment in the management of spasticity. Further research is required to come to a consensus on the effects of TENS and Baclofen.

Electrical stimulation parameters: The parameters for each study are individualized to specific treatments. All of the parameters are inconsistent with each other; therefore no overall consensus can be determined. Throughout our research, there has been no consensus on any one particular set of parameters that will produce the most anti-spastic effect. In fact, each article used a different set of parameters. See Table 1.

Discussion

The results of this systematic review indicate that electrical stimulation applied alone or as a co-intervention reduces spasticity in people with neuromuscular disorders in the short term. These results are mainly generalizable to people with moderate to severe spasticity that are greater than 3 months post onset. Clinically, it is important to find effective modalities to reduce tone and potentially prevent further complications related to spasticity which include contractures, muscle imbalances, osteoarthritis, pain, and skin breakdown. Due to these complications, it is clear that reducing tone, may potentially improve one's quality of life. It is important to explore conservative options to reduce spasticity because drug therapies and surgeries have many side effects, and most individuals seek alternative treatment before resorting to them.

It is encouraging that every study had positive results in decreasing tone in people with neuromuscular disorders. However, more research is needed to determine whether electrical stimulation is more beneficial alone or in combination with other modalities. Studies that combined electrical stimulation with Botox^{5,16}, passive motion¹⁸⁻¹⁹, or lower extremity cycling²⁰ showed that these combinations reduced spasticity more than electrical stimulation or its co-intervention alone. These results might suggest that electrical stimulation works best in combination with other therapies. However, at this point in time it is difficult to conclude this due to the small number of studies, small number of high quality studies, and the diverse populations that are being studied. A study would need to be conducted with the same population of people receiving electrical stimulation alone or electrical stimulation combined with botox, neuroprosthetics, passive locomotion, or TENS with baclofen.

In reading the literature, it is also difficult to determine what parameters to use for the most effective results. Each study used a different set of parameters and there is no research comparing different sets of parameters. Four studies used biphasic currents and one study used continuous current. For the remaining studies, parameters differed greatly, and one study did not even state what parameters were used. One commonality between

most studies was that burst durations, ramp time, and/or intensities were_individualized to the patient. There needs to be further research determining a specific set of parameters that will reduce tone in people with spasticity. Once this set of parameters is determined, clinicians of all settings will be able to administer an established standardized protocol for using electrical stimulation to reduce spasticity and optimize treatment in people with neurological impairments.

Overall, electrical stimulation appears beneficial in managing spasticity in the short term but studies evaluating long term effects are lacking. Further research is needed to determine if there are any long-term effects. However, due to publication bias, there may be more studies completed that did not result in a significant reduction in spasticity that were not included in this systematic review because they were never published.

Strengths of this systematic review include a clearly stated purpose, detail regarding the search strategy and study selection methods was provided, description of the processes and tools used to assess the quality of the individual studies, and detail about the research validity of studies. Multiple people individually critiqued each potential article included in this study and discussed reasoning for inclusion of each article, which controlled for potential bias. And lastly, the selection criteria for this study were specific and clearly stated, the researchers pooled the results into homogenous categories and a valid and reliable assessment tool was used to critically appraise each article.

The major limitations of this systematic review are that many of the individual studies were not RCTs and most studies had small sample sizes. For each article reviewed, an effect size was unable to be calculated therefore a meta-analysis could not be performed. Parameters were limited in consistency, specifying treatment times, and the effectiveness of a long-term follow up was not determined. Other limitations include the omissions of non-English language publications, the potential for publication bias and no adverse effects were mentioned in the individual articles. Adverse effects that can be seen while using electrical stimulation include skin irritation, discomfort during application, and short-term duration of the effects. It is clinically important to note said adverse effects for one must weigh the pros and cons of the application for each individual person. When evaluating a study, adverse effects are an important component to consider for a clinician's use of electrical stimulation.

For future research, long-term follow-ups are needed, along with a standardization of parameters. These research studies should also be performed with larger sample sizes. Overall, there needs to be much more future research to come to a conclusion on which parameters work the best to decrease tone in patients with neurological disorders.

Conclusion

Electrical stimulation alone, and included in a multimodal treatment plan seems to produce an anti-spastic effect in individuals with acute and chronic neuromuscular disorders. It may be beneficial for clinicians to utilize electrical stimulation prior to and/ or during their treatment session to reduce spasticity. This reduction in spasticity may potentially optimize the treatment session aiding a person in reaching their goals for physical therapy in a safe and efficient manner. It also has the potential to improve their quality of life

References

- Seib TP, Price R, Reyes MR, and Lehmann JF. (1994) The quantitative measurement of spasticity: effect of cutaneous electrical stimulation. *Arch Phys Med Rehabil*; 75(7):746-750
- Mullick A. A., Musampa N. K., Feldman A. G., et al. Stretch reflex spatial threshold measure discriminates between spasticity and rigidity. *Clin Neurophsiol.* 2012; http://dx.doi.org/10.1016/j.clinph.2012.10.008
- Sanger T D. Delgado M R, Gaebler-Spira D. Classification and definition of disorders causing hypertonia in childhood. *Pediatrics*. 2003; 111(1):89-97.
- Salm A, Veltink PH, Ijzerman MJ, Groothuis-Oudshoorn KC, Nene AV, Hermens HJ. Comparison of electric stimulation methods for reduction of triceps surae spasticity in spinal cord injury. *Arch Phys Med Rehabil.* 2006;87(2):222-228
- 5. Aydin G, Tomruk S, Keles I, et al. Transcutaneous electrical nerve stimulation versus baclofen in spasticity. *Am J Phys Med Rehabil*. 2005; 84(8):584-592
- Mahar, C. Reliability of the PEDro Scale for Rating Quality of Randomized Controlled Trials. *Phys Ther.* 2003; 83:713-721.

- Sommerfeld DK, Gripenstedt U, Welmer A-K. Spasticity after stroke: an overview of prevalence, test instruments, and treatments. *Am J Phys Med Rehabil*. 2012; 91(9):814-820.
- Armutlu K, Meric A, Kirdi N, et al. The effect of transcutaneous electrical nerve stimulation on spasticity in multiple sclerosis patients: a pilot study. *Neurorehabil Neural Repair* 2003; 17(2):79
- McIntyre A, Lee T, Janzen S. Systematic review of the pharmacological interventions in the treatment of spasticity of the hemiparetic lower extremity more than six months post stroke. *Top Stroke Rehabil.* 2012; 19(6):479.
- Weingarden HP, Zeilig G, Heruti ., Shemesh Y, Ohry A, Dar A, Katz D, Nathan R, Smith A. (1998) Hybrid functional electrical stimulation orthosis system for the upper limb: effects on spasticity in chronic stable hemiplegia. *Am J Phys Med Rehabil*; 77(4):276-281.
- Ring H, Rosenthal N. Controlled study of neuroprosthetic functional electrical stimulation in sub-acute post-stroke rehabilitation. *J Rehabil Med* 2005; 37(1):32-36.
- 12. King TI. The effect of neuromuscular electrical stimulation in reducing tone. *Am J Occup Ther*. 1996; 50(1):62-64.
- 13. Cheng J, Yang Y, Chang S, Lin P, Wang R. Effects of combining electric stimulation with active ankle dorsiflexion while standing on a rocker board: a pilot study for subjects with spastic foot after stroke. *Arch Phys Med Rehabil*.2010;91(4):505-512

- 14. Granat MH, Ferguson AC, Andrews BJ, and Delargy M. The role of functional electrical stimulation in the rehabilitation of patients with incomplete spinal cord injury--observed benefits during gait studies. *Paraplegia* 1993; 31: 207-215
- 15. Skold C, Lohn L, Harms-Ringdahl K, Hultling C, et al. Effects of functional electrical stimulation training for six months on body composition and spasticity in motor complete tetraplegic spinal cord-injured individuals. *J Rehabil Med* 2002; 34(1): 25-32
- 16. Hesse S, Reiter F, Konrad M, and Jahnke MT. Botulinum toxin type A and shortterm electrical stimulation in the treatment of upper limb flexor spasticity after stroke: a randomized, double-blind, placebo-controlled trial. *Clin Rehabil.* 1998; 12(5):381-388
- 17. Carda S, Molteni F. Taping versus electrical stimulation after botulinum toxin type A injection for wrist and finger spasticity. A case-control study. *Clin Rehabil* 2005; 19(6): 621-626
- Yamaguchi T, Tanabe S, Muraoka Y, et al. Immediate effects of electrical stimulation combined with passive locomotion-like movement on gait velocity and spasticity in persons with hemiparetic stroke: a randomized controlled study. *Clin Rehabil.* 2001; 26(7):619-628
- 19. Krause P, Szecal J, Straube A. Changes in spastic muscle tone increase in patients with spinal cord injury using functional electrical stimulation and passive leg movements. *Clin Rehabil* 2008; 22(7): 627-634

- 20. Lo HC, Tsai KH, Su FC, et al. Effects of a functional electrical stimulationassisted leg-cycling wheelchair on reducing spasticity of patients after stoke. *J Rehabil Med.* 2009; 41: 242-246
- 21. Chung B, Cheng B. Immediate effect of trancutaneous electrical nerve stimulation on spasticity in patients with spinal cord injury. *Clin Rehabil* 2010;24:202-210
- 22. Follett KA, Hichon PW, Piper J, et al. Dorsal rhizotomy for spasticity. *Wis Med J*. 1995;162(3)

Tab	ole	1.
-----	-----	----

Study	Country	Dx	Ν	Study Arms	Outcomes	Follow- up	Treatment	Results	Strengths and	Parameters
									mintations	
Weingarden		TBI	10	Upper extremity	Passive range	6 month	All participants	Significant	MAS is	36pps, 40%
et al. (1998)		CVA		FES orthosis	of motion		received electrical	improveme	reliable and	duty cycle,
				system	(goniometric		stimulation 30	nts in	valid	burst
					measurement		minutes 2x/day	PROM		duration was
					s)		and gradually	measureme	No control	individualize
					Posture		increased to a	nts and	group	d, pulse
					measurement		total of several	posture of	No blinding	duration
					s of the writs		hours per day for	the upper		ranged from
					and elbow		6 months. AROM	extremity.		0.1-0.5ms,
					joints at rest		was initiated	Improvem		ramp of the
					(with		during the first 2	ent in		stimulation
					improvement		weeks of the	MAS, but		was
					being toward		protocol. FES	not		individualize
					neutral)		functional	significant		d
							training was			
							initiated during			
							the 3 rd week.			

Ring et al.	Israel	CVA	22	Control group +	MAS	None	All participants	Significant	Randomized	Stimulation
(2005)				physical therapy	Active range		attended 3	reduction	Parameters	parameters
				Neuroprosthesis	of motion		therapy days per	in shoulder	were	were
				group + physical	(goniometric		week 3 hours/day	and finger	individualize	individually
				therapy	measurement		They received	spasticity	d	adjusted as
				1.5	s)		functional	was		to pulse
							training to	demonstrat	Small sample	duration and
							improve ADLs.	ed in the	size	amplitude
							The	neuroprost		based on
							neuroprosthesis	hesis group	D	muscle
							group used the			response to
							Handmaster			achieve a
							system 10			full arc of
							minutes twice a			finger
							day, progressed to)		motion, and
							50 minutes 3			patient
							times a day over			tolerance.
							the first 2 weeks			
							then remained at			
							this level of use			
							until the end of			
							the 6-week study			
Seib et al.	US	TBI	10	Electrical	SMS	None	10 subjects	Significant	No control	2 second
(1994)		SCI		Stimulation	(spasticity		received electric	reduction	group	ramp up, 15
					measurement		stimulation with	in	No blinding	seconds on,
					system)		the electrode	spasticity		20 seconds
					Subjective		placed on the	in 8		off, 30 pps,
					spasticity		tibialis anterior	participant		intensity set
					assessment		for a 20 minute	s at 24hrs		to individual
					form		treatment session	post		tolerance
								treatment		

Van der	Salm	The	SCI	10	Placebo	MAS	None	Each participant	Significant	Blinding	300us, 30Hz
(2006)		Netherl			Agonist stimulation	Clonus score		received all 4	reduction	Participants	
		ands			Antagonist	H-reflex		interventions on 4	in	were used as	
					stimulation	measurement		separate days	spasticity	their own	
					Dermatome	Reflex		with a minimum	when	controls	
					stimulation	initiating		of 72 hours	stimulating		
						angle		between 2	the agonist		
								subsequent	and		
								interventions	antagonist		
									muscles		
King (1	996)	US	CVA	21	NMES	Torque meter	None	10 patients	Significant	Randomized	Synchronous
					Passive stretch			received NMES	improveme	Baseline	mode
								while 11 patients	nt in	taken	45 Hz,
								received passive	NMES	No attrition	250us, ramp
								stretching.	group.	Standardized	up: down
								2 electrodes			3:0s
								placed on the		Small	on/off 10 sec
								volar side of the		Sample	amplitude
								forearm both			15-20mA
								proximally and			
								distally.			

~	~ .	~		L		L -	L	~		
Cheng et al.	China	CVA	15	Electrical	MMT	None	7 patients in	Significant	Randomized	40Hz,
(2010)				stimulation +	(dynamomet		control group	decrease in		intensity
				rocker board +	er)		received 30 min	spasticity	Attrition	adjusted per
				ambulation training	EMG		of general	with	Small	person, 10s
				Control + general	Electronic		exercise and 15	ambulation	Sample size	on/10s off
				exercises +	goniometer		min of	seen in the		
				ambulation training	Balance		ambulation	experiment		
					master		training	al group		
					system		8 patients in			
					EFEP (timed		experimental			
					walking test)		group received 30			
							minutes of rocker			
							board training			
							with e-stim and			
							15 mins of			
							ambulation			
							training			
Granat et al.	Scotlan	SCI	6	PRE + stimulation	MMT	6 month	3 dependent on	Significant	No attrition	25Hz, 300us,
(1993)	d				(Dynamomet		wheelchair, 3	decrease in	Reliable and	duty cycle:
					er)		independent of a	spasticity	Valid	4sec on 8 sec
					MAS		wheelchair	and	outcome	off
					Pendulum		Individualized	increase in	measures	
					Test		strengthening	strength		
					Modified		program using	overall	Small sample	
					Barthel Test		electric		size	
			1				stimulation.			

Skold et al.	US	SCI	15	FES cycling	Body weight	6 month	30 min/sessions:	No	Randomized	Not stated
(2002)				Control group	BMI		8 patients	significant	No attrition	
					MAS		received FES	changes		
					Isokinetic		cycling 3x/week		Small sample	
					kin-com		for 6 months		size	
					EMG					
					VAS					
Hesse et al.	German	CVA	24	Botox +electrical	MAS	2, 6, 12	Patients that	No	Randomized	20 Hz,
(1998)	У			stim	Goniometric	weeks	received botox	significant	Blinding	200us, 50-
				Botox	measurement		received 2	decrease in		90mA
				Placebo + electrical	ADL		injections per	spasticity	Outcome	
				stim	subjective		muscle (FCU,	across	measures	
				Placebo	data		FCR, FDP)	groups.	(with the	
							electrical	Muscle	exception of	
							stimulation	tone	MAS) may	
							groups received	reduction	not be valid	
							stim of both arms	was most		
							and forearm for	prominent		
							30 minutes	in bottom		
							3x/day during 3	+e-stim		
							days following	group		
							injection			
Carda et al.	Italy	CVA	65	Botulinm	MAS	1 month	90 minutes a day	Botulinum	Large sample	Continuous
(2005)				+functional taping			for 5 days	and taping	size	10s
				Botulinum + Estim				was more		50Hz
								significant	Not	300ms
									randomized	

Yamaguchi	Japan	CVA	27	Electric stimulation	MAS	None	9 patients per	Significant	Randomized	Biphasic
et al. (2001)				+ passive			group. 20	improveme	Tx allocation	current;
				locomotion			minutes/session;	nt in	concealed	30Hz, 0.3us
				Electric stimulation			e-stim was	electrical		
				only			applied to end	stimulation	Small sample	
				Passive locomotion			plate zone of the	combined	size	
				only			tibialis anterior.	with		
								passive		
								locomotion		
Krause et al.	German	SCI	5	Active movement	MAS	None	All subjects	Significant	Randomized	Biphasic
(2008)	У			+FES	Pendulum		received both	increase in	Assessor	Pulse width
				Passive movement	test/		treatments	relaxation	blinded	500ms
					relaxation			index after		Frequency
					index			the active	Small sample	20Hz
								session +	size	
								FES		
Lo et al.	Taiwan	CVA	17	Functional	MAS	None	8 subjects as a	There was	Reliable tests	Biphasic
(2009)				electrical	H-reflex		control group	а	and measures	20 Hz
				stimulation assisted	measurement		used a leg cycling	significant		frequency
				leg cycling	Pendulum		WC	reduction	No long term	pulse
				wheelchair	test		7 subjects used	in	follow up	duration of
							FES-LW	spasticity	Not	300ns
							This was	with use of	randomized	
							performed for 10	the FES-		
							days	LW		

Chung et al.	China	SCI	18	Active TENS	Composite	None	Electrodes were	Significant	Randomized	PRO-TENS
(2010)				Placebo TENS	spasticity		placed over the	reduction	Blinding	0.25ms,
					score		common peroneal	in	Reliable and	100Hz,
							nerve posterior to	spasticity	valid	15mA
							the head of the	in the	outcome	
							fibula to the limb	active	measure	
							with dominant	TENS		
							spasticity for 60	group	Small sample	
							minutes		size	
Armutlu et	Turkey	MS	10	TENS	Enraf nonius	None	All participants	Significant	Randomized	100Hz, 0.3us
al. (2003)					myomed		received TENS	reduction	No attrition	
					electromyogr		treatment	in	Reliable	
					aphic		20min/day for 4	spasticity	outcome	
					feedback		weeks		measures	
					apparatus		Electrodes placed			
					MAS		at middle of		Small sample	
					Ambulation		gastroc/soleus,		No control	
					index		and laterally to			
							plantar surface of			
							the foot			

Aydin et al.	Turkey	SCI	21	1. Baclofen +	MAS	None	10 participants	Significant	Blinding to	Biphasic
(2005)				exercise	SFS(spasticit		received baclofen	improveme	evaluation	square
				2. TENS + exercise	y frequency		and 11 received	nts in both		waves ; 50
					scale): self		TENS. Baclofen	treatment		mA (not
					report		group dosage was	groups		causing
					DTR		increased by 5mg	No		contraction)
					Electrophysi		every 3-5 days	significant		100Hx,
					cologic		until a max of	difference		100us
					investigation		80mg was	between		
					s		reached.	groups		
							In TENS group,			
							electrodes were			
							placed on			
							bilateral tibial			
							nerves. 15			
							sessions lasting			
							15 minutes			

Appendix A

PEDro scale

1. eligibility criteria were specified

- 2. subjects were randomly allocated to groups (in a crossover study, subjects were randomly allocated an order in which treatments were received)
- 3. allocation was concealed
- 4. the groups were similar at baseline regarding the most important prognostic indicators
- 5. there was blinding of all subjects
- 6. there was blinding of all therapists who administered the therapy
- 7. there was blinding of all assessors who measured at least one key outcome
- 8. measures of at least one key outcome were obtained from more than 85% of the subjects initially allocated to groups
- 9. all subjects for whom outcome measures were available received the treatment or control condition as allocated or, where this was not the case, data for at least one key outcome was analysed by "intention to treat"
- no \Box yes \Box where: no \Box yes \Box where:
- no \Box yes \Box where:
- no \Box yes \Box where: no \Box yes \Box where: no \Box yes \Box where: no \Box yes \Box where:
- no \Box yes \Box where:

no \Box yes \Box where: 10. the results of between-group statistical comparisons are reported for at least one

key outcome no \Box yes \Box where: 11. the study provides both point measures and measures of variability for at

least one key outcome no \Box yes \Box where